3,295 research outputs found

    Lessons from the Development of an Anomaly Detection Interface on the Mars Perseverance Rover using the ISHMAP Framework

    Full text link
    While anomaly detection stands among the most important and valuable problems across many scientific domains, anomaly detection research often focuses on AI methods that can lack the nuance and interpretability so critical to conducting scientific inquiry. In this application paper we present the results of utilizing an alternative approach that situates the mathematical framing of machine learning based anomaly detection within a participatory design framework. In a collaboration with NASA scientists working with the PIXL instrument studying Martian planetary geochemistry as a part of the search for extra-terrestrial life; we report on over 18 months of in-context user research and co-design to define the key problems NASA scientists face when looking to detect and interpret spectral anomalies. We address these problems and develop a novel spectral anomaly detection toolkit for PIXL scientists that is highly accurate while maintaining strong transparency to scientific interpretation. We also describe outcomes from a yearlong field deployment of the algorithm and associated interface. Finally we introduce a new design framework which we developed through the course of this collaboration for co-creating anomaly detection algorithms: Iterative Semantic Heuristic Modeling of Anomalous Phenomena (ISHMAP), which provides a process for scientists and researchers to produce natively interpretable anomaly detection models. This work showcases an example of successfully bridging methodologies from AI and HCI within a scientific domain, and provides a resource in ISHMAP which may be used by other researchers and practitioners looking to partner with other scientific teams to achieve better science through more effective and interpretable anomaly detection tools

    RECAST: Interactive Auditing of Automatic Toxicity Detection Models

    Full text link
    As toxic language becomes nearly pervasive online, there has been increasing interest in leveraging the advancements in natural language processing (NLP), from very large transformer models to automatically detecting and removing toxic comments. Despite the fairness concerns, lack of adversarial robustness, and limited prediction explainability for deep learning systems, there is currently little work for auditing these systems and understanding how they work for both developers and users. We present our ongoing work, RECAST, an interactive tool for examining toxicity detection models by visualizing explanations for predictions and providing alternative wordings for detected toxic speech.Comment: 8 Pages, 3 figures, The eighth International Workshop of Chinese CHI Proceeding

    The Nuclear Network: Multiplex Network Analysis for Interconnected Systems

    Get PDF
    States facing the decision to develop a nuclear weapons program do so within a broader context of their relationships with other countries. How these diplomatic, economic, and strategic relationships impact proliferation decisions, however, remains under-specified. Adding to the existing empirical literature that attempts to model state proliferation decisions, this article introduces the first quantitative heterogeneous network analysis of how networks of conflict, alliances, trade, and nuclear cooperation interact to spur or deter nuclear proliferation. Using a multiplex network model, we conceptualize states as nodes linked by different modes of interaction represented on individual network layers. Node strength is used to quantify factors correlated with nuclear proliferation and these are combined in a weighted sum across layers to provide a metric characterizing the proliferation behavior of the state. This multiplex network modeling approach provides a means for identifying states with the highest relative likelihood of proliferation—based only on their relationships to other states. This work demonstrates that latent conflict and nuclear cooperation are positively correlated with proliferation, while an increased trade dependence suggests a decreased proliferation likelihood. A case study on Iran’s controversial nuclear program and past nuclear activity is also provided. These findings have clear, policy-relevant conclusions related to alliance posture, sanctions policy, and nuclear assistance. Abstract ©The Authors

    J. L. Austin and literal meaning

    Get PDF
    Alice Crary has recently developed a radical reading of J. L. Austin's philosophy of language. The central contention of Crary's reading is that Austin gives convincing reasons to reject the idea that sentences have context-invariant literal meaning. While I am in sympathy with Crary about the continuing importance of Austin's work, and I think Crary's reading is deep and interesting, I do not think literal sentence meaning is one of Austin's targets, and the arguments that Crary attributes to Austin or finds Austinian in spirit do not provide convincing reasons to reject literal sentence meaning. In this paper, I challenge Crary's reading of Austin and defend the idea of literal sentence meaning

    HELIUM PHOTODISINTEGRATION AND NUCLEOSYNTHESIS: IMPLICATIONS FOR TOPOLOGICAL DEFECTS, HIGH ENERGY COSMIC RAYS, AND MASSIVE BLACK HOLES

    Get PDF
    We consider the production of 3^3He and 2^2H by 4^4He photodisintegration initiated by non-thermal energy releases during early cosmic epochs. We find that this process cannot be the predominant source of primordial 2^2H since it would result in anomalously high 3^3He/D ratios in conflict with standard chemical evolution assumptions. We apply this fact to constrain topological defect models of highest energy cosmic ray (HECR) production. Such models have been proposed as possible sources of ultrahigh energy particles and gamma-rays with energies above 102010^{20}eV. The constraints on these models derived from 4^4He-photodisintegration are compared to corresponding limits from spectral distortions of the cosmic microwave background radiation (CMBR) and from the observed diffuse gamma-ray background. It is shown that for reasonable primary particle injection spectra superconducting cosmic strings, unlike ordinary strings or annihilating monopoles, cannot produce the HECR flux at the present epoch without violating at least the 4^4He-photodisintegration bound. The constraint from the diffuse gamma-ray background rules out the dominant production of HECR by the decay of Grand Unification particles in models with cosmological evolution assuming standard fragmentation functions. Constraints on massive black hole induced photodisintegration are also discussed.Comment: 20 latex pages, 1 figure added via figures comman

    Homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium

    Get PDF
    Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor
    • …
    corecore